已知二次函数g(x)对∀x∈R都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,设函数f(x)=g(x+12)+mlnx+98(m∈R,x>0).
(Ⅰ)求g(x)的表达式;
(Ⅱ)若∃x∈R+,使f(x)≤0成立,求实数m的取值范围;
(Ⅲ)设1<m≤e,H(x)=f(x)-(m+l)x,求证:对于∀x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.
1
2
9
8
【考点】抽象函数的周期性.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:222引用:26难度:0.7
相似题
-
1.已知函数f(x),g(x)在R上的导函数分别为f'(x),g'(x),若f(x+2)为偶函数,y=g(x+1)-2是奇函数,且f(3-x)+g(x-1)=2,则下列结论正确的是( )
发布:2024/12/28 23:30:2组卷:129引用:7难度:0.6 -
2.已知函数f(x)对任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的图象关于点(-1,0)对称,且f(1)=2,则f(2009)=( )
发布:2024/12/29 7:0:1组卷:84引用:2难度:0.5 -
3.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
发布:2024/12/20 0:0:3组卷:86引用:8难度:0.8