已知函数f(x)=x2+ax+14,g(x)=-lnx.
(1)求f(x)在[2,4]上的最大值h(a);
(2)用min{m,n}表示m,n中的较小者.设h(x)=min{f(x),g(x)}(x>0),若h(x)有三个零点,求实数a的取值范围.
f
(
x
)
=
x
2
+
ax
+
1
4
,
g
(
x
)
=
-
lnx
【考点】利用导数研究函数的最值.
【答案】(1)h(a)=
;
(2)实数a的取值范围是(-,-1).
4 a + 65 4 , a ≥ - 6 |
2 a + 17 4 , a < - 6 |
(2)实数a的取值范围是(-
5
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:14引用:1难度:0.4
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:296引用:2难度:0.4 -
2.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:47引用:4难度:0.5 -
3.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:187引用:2难度:0.1