试卷征集
加入会员
操作视频

2021年新冠肺炎仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”变异毒株、“拉姆达”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.在日常防护中,口罩是必不可少的防护用品.某口罩生产厂家为保障抗疫需求,调整了口罩生产规模.已知该厂生产口罩的固定成本为200万元,每生产x万箱,需另投入成本p(x)万元,当年产量不足90万箱时,p(x)=
1
2
x2+40x;当年产量不低于100万箱时,p(x)=100x+8lnx+
760
x
-2180,若每万箱口罩售价100万元,通过市场分析,该口罩厂生产的口罩当年可以全部销售完.
(1)求年利润y(万元)关于年产量x(万箱)的函数关系式;
(2)年产量为多少万箱时,该口罩生产厂家所获得年利润最大?(注:ln95≈4.55)

【答案】(1)
y
=
-
1
2
x
2
+
60
x
-
200
0
x
90
1980
-
8
lnx
-
760
x
x
90
;(2)年产量为95万箱.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:76引用:8难度:0.6
相似题
  • 1.已知函数f(x)=x3-2kx2+x-3在R上不单调,则k的取值范围是

    发布:2024/12/29 13:0:1组卷:236引用:3难度:0.8
  • 2.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为(  )

    发布:2024/12/29 13:0:1组卷:265引用:7难度:0.9
  • 3.已知函数f(x)=ax2+x-xlnx(a∈R)
    (Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
    (Ⅱ)若函数f(x)有两个极值点x1,x2(x1≠x2),证明:
    x
    1
    x
    2
    e
    2

    发布:2024/12/29 13:30:1组卷:141引用:2难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正