解题方法回顾:
在求某边上的高之类问题时,常常利用同一个图形面积不变或等底等高面积不变或多个图形面积之和不变的原理来解决,称为“等积法”.
解题方法应用:
(1)已知:如图1,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,求PE+PF的值.
小陈同学想到了利用“等积法”解决本题,过程如下:(如图2)
解:连接PO,∵矩形ABCD的两边AB=5,BC=12,
∴S矩形ABCD=AB⋅BC=60,OA=OC,OB=OD,AC=BD,
∴AC=AB2+BC2=122+52=13,
∴S△AOD=14S矩形ABCD=15,OA=OD=12AC=132,
∴S△AOD=S△AOP+S△DOP=12OA⋅PE+12OD⋅PF=12OA(PE+PF)=12×132×(PE+PF)=15,
∴PE+PF=60136013.(请你填上小陈计算的正确答案)
(2)如图3,正方形ABCD的边长为2,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B',C',D'.
①设AP=x,BB'+CC'+DD'=y,求y与x的函数关系式,并求出x取值范围;
②直接写出y的最大值为 44,最小值为 2222

AC
=
A
B
2
+
B
C
2
=
12
2
+
5
2
=
13
S
△
AOD
=
1
4
S
矩形
ABCD
=
15
OA
=
OD
=
1
2
AC
=
13
2
S
△
AOD
=
S
△
AOP
+
S
△
DOP
=
1
2
OA
⋅
PE
+
1
2
OD
⋅
PF
=
1
2
OA
(
PE
+
PF
)
1
2
×
13
2
×
(
PE
+
PF
)
=
15
60
13
60
13
2
2
【考点】四边形综合题.
【答案】;4;2
60
13
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:424引用:3难度:0.4
相似题
-
1.问题背景:
如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.3
实验探究:
(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①= ;②直线AE与DF所夹锐角的度数为 .AEDF
(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.
拓展延伸:
在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为 .发布:2025/6/9 18:30:1组卷:2360引用:9难度:0.2 -
2.(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;
(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;EFEG
(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.发布:2025/6/9 18:30:1组卷:674引用:7难度:0.5 -
3.【探究】在一次数学课上,老师出示了这样一道题目:“如图,在矩形ABCD中,AC:为对角线,AB<AD,E、F分别为边BC、AD上的点,连接AE、CF,分别将△ABE和△CDF沿AE、CF翻折,使点B、D的对称点G、H都落在AC上,求证:四边形AECF是平行四边形.”以下是两名学生的解题方法:
甲学生的方法是:首先由矩形的性质和轴对称的性质证得AB=CD,AD∥BC,∠AHF=90°,∠CGE=90°,易得AH=CG,可得△AFH≌△CEG(ASA),由平行四边形的判定定理可得结论.
乙学生的方法是:不利用三角形全等知识,依据平行四边形的定义证明.
(1)甲学生证明四边形AECF是平行四边形所用的判定定理的内容是.
(2)用乙学生的方法完成证明过程.
【应用】当学生们完成证明后,老师又提出了一个问题:
若四边形AECF是菱形,则tan∠DAC的值为.发布:2025/6/9 19:0:2组卷:248引用:5难度:0.3