勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.勾股定理内容为:如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.
(1)如图2、3、4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 33个;
(2)如图5所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;
(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)
①a2+b2+c2+d2=m2m2;
②b与c的关系为 b=cb=c,a与d的关系为 a+d=ma+d=m.
【考点】勾股定理的证明.
【答案】3;m2;b=c;a+d=m
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/24 14:0:35组卷:1078引用:3难度:0.3
相似题
-
1.10.《时代数学学习》杂志2007年3月将改版为《时代学习报•数学周刊》,其徽标是我国古代“弦图”的变形(见示意图).该图可由直角三角形ABC绕点O同向连续旋转三次(每次旋转90°)而得.因此有“数学风车”的动感.假设中间小正方形的面积为1,整个徽标(含中间小正方形)的面积为92,AD=2,则徽标的外围周长为( )
发布:2025/1/25 8:0:2组卷:363引用:2难度:0.6 -
2.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论正确的是 .(填序号即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.发布:2024/12/23 12:0:2组卷:459引用:3难度:0.6 -
3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为( )
发布:2024/12/19 23:30:5组卷:1867引用:29难度:0.6