为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如表(为所学过的一次函数,反比例函数或二次函数中的一种).
x(亩) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.
【考点】二次函数的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 4:0:7组卷:1079引用:10难度:0.5
相似题
-
1.某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价.经过市场调查,每月的销售量y(件)与每件的售价x(元)之间满足如图所示的函数关系.
(1)求每月的销售量y(件)与每件的售价x(元)之间的函数关系式;(不必写出自变量的取值范围)
(2)物价部门规定,该防护品每件的利润不允许高于进货价的30%.设这种防护品每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?发布:2025/5/24 6:0:2组卷:3641引用:11难度:0.4 -
2.如图所示,拱桥的形状是抛物线,其函数关系式为
,当水面离桥顶的高度OH为4m时,水面的宽度AB为 m.y=-116x2发布:2025/5/24 6:0:2组卷:234引用:3难度:0.7 -
3.某商贸公司购进某种商品,经过市场调研,整理出这种商品在第x(1≤x≤48)天的售价与日销售量的相关信息如表:
时间x(天) 1≤x<30 30≤x≤48 售价 x+30 60 日销售量(kg) -2x+120
(1)求y与x的函数关系式;
(2)第几天的销售利润最大?最大日销售利润为多少?
(3)公司在销售的前28天中,每销售1kg这种商品就捐赠n元利润(n<9)给“希望工程,若每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.发布:2025/5/24 6:30:2组卷:1245引用:3难度:0.1