如图(1),∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图(1),当α=90°时,DE,DF,AD之间满足的数量关系是DE+DF=ADDE+DF=AD;
(2)如图(2),将图(1)中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=12AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与AD的延长线交于点E,其他条件不变,请你探究:在运动变化过程中,(2)中的结论还成立吗?如成立,请说明理由.如不成立,请写出DE,DF,AD之间满足的数量关系,并加以证明.

1
2
【考点】四边形综合题.
【答案】DE+DF=AD
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/4 8:0:9组卷:223引用:2难度:0.1
相似题
-
1.如图,在矩形ABCD中,AB=6cm,BC=2cm.点P从点A出发,沿射线AB方向运动,在运动过程中,以线段AP为斜边作等腰直角三角形APQ.当PQ经过点C时,点P停止运动.设点P的运动距离为x(cm),△APQ与矩形ABCD重合部分的面积为y(cm2).
(1)当点Q落在CD边上时,x=cm;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)设PQ的中点为M,直接写出在整个运动过程中,点M移动的距离.发布:2025/5/22 20:0:1组卷:125引用:2难度:0.2 -
2.如图,在△ABC中,O是AB的中点,过A作BC的平行线,交CO延长线于D,点E,F分别是BC,AD的中点,连接AE和BF.
(1)求证:△OBC≌△OAD;
(2)请从以下两个问题中选择其中一个进行解答,(若多选,按第一个解答计分)
①当△ABC满足什么条件时,四边形AEBF是菱形?请加以证明;
②当△ABC满足什么条件时,四边形AEBF是矩形?请加以证明.发布:2025/5/22 19:30:1组卷:182引用:1难度:0.5 -
3.(1)【证明体验】如图1,正方形ABCD中,E、F分别是边AB和对角线AC上的点,∠EDF=45°.
①求证:△DBE∼△DCF;
②=;BECF
(2)【思考探究】如图2,矩形ABCD中,AB=6,BC=8,E、F分别是边AB和对角线AC上的点,tan∠EDF=,BE=5,求CF的长;43
(3)【拓展延伸】如图3,菱形ABCD中,BC=5,对角线AC=6,BH⊥AD交DA的延长线于点H,E、F分别是线段HB和AC上的点,tan∠EDF=,HE=34,求CF的长.85发布:2025/5/22 19:30:1组卷:1727引用:13难度:0.2