已知函数f(x)满足f(x)=x3+f′(23)x2-x+C(其中f′(23)为f(x)在点x=23处的导数,C为常数).
(1)求f′(23)的值;
(2)求函数f(x)的单调区间;
(3)设函数g(x)=[f(x)-x3]•ex,若函数g(x)在x∈[-3,2]上单调,求实数C的取值范围.
′
(
2
3
)
x
2
′
(
2
3
)
2
3
′
(
2
3
)
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:115引用:8难度:0.3
相似题
-
1.已知函数f(x)=x3-2kx2+x-3在R上不单调,则k的取值范围是 ;
发布:2024/12/29 13:0:1组卷:236引用:3难度:0.8 -
2.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为( )
发布:2024/12/29 13:0:1组卷:265引用:7难度:0.9 -
3.已知函数f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若函数f(x)有两个极值点x1,x2(x1≠x2),证明:.x1•x2>e2发布:2024/12/29 13:30:1组卷:141引用:2难度:0.2