在学习《完全平方公式》时,某数学学习小组发现:已知a+b=5,ab=3,可以在不求a、b的值的情况下,求出a2+b2的值.具体做法如下:
a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.
(1)若a+b=7,ab=6,则a2+b2=3737;
(2)若m满足(8-m)(m-3)=3,求(8-m)2+(m-3)2的值,同样可以应用上述方法解决问题.具体操作如下:
解:设8-m=a,m-3=b,
则a+b=(8-m)+(m-3)=5,ab=(8-m)(m-3)=3,
所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.
请参照上述方法解决下列问题:若(3x-2)(10-3x)=6,求(3x-2)2+(10-3x)2的值;
(3)如图,某校“园艺”社团在三面靠墙的空地上,用长12米的篱笆(不含墙AM,AD,DN)围成一个长方形花圃ABCD,花圃ABCD的面积为20平方米,其中墙AD足够长,墙AM⊥墙AD,墙DN⊥墙AD,AM=DN=1米.随着学校“园艺”社团成员的增加,学校在花圃ABCD旁分别以AB,CD边向外各扩建两个正方形花圃,以BC边向外扩建一个正方形花圃(如图所示虚线区域部分),请问新扩建花圃的总面积为 116116平方米.
【答案】37;116
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/8 8:0:9组卷:1069引用:2难度:0.5
相似题
-
1.阅读下列题目的解题过程:
已知a、b、c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;
(2)错误的原因为:;
(3)本题正确的结论为:.发布:2024/12/23 18:0:1组卷:2622引用:25难度:0.6 -
2.若a是整数,则a2+a一定能被下列哪个数整除( )
发布:2024/12/24 6:30:3组卷:417引用:7难度:0.6 -
3.阅读理解:
能被7(或11或13)整除的特征:如果一个自然数末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是7(或11或13)的倍数,则这个数就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法验证67822615是7的倍数(写明验证过程);
(2)若对任意一个七位数,末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是11的倍数,证明这个七位数一定能被11整除.发布:2025/1/5 8:0:1组卷:134引用:3难度:0.4