如图①所示,以正方形ABCO的点O为坐标原点建立平面直角坐标系,其中线段OA在y轴上,线段OC在x轴上,其中正方形ABCO的周长为16.

(1)直接写出B、C两点坐标;
(2)如图②,连接OB,若点P在y轴上,且S△BOP=2S△BOA,求P点坐标.
(3)如图③,若OB∥DE,点P从点O出发,沿x轴正方向运动,连接PB,PE.则∠OBP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点O,D,C重合的情况)?并说明理由.
【考点】四边形综合题.
【答案】(1)B(4,4),C(4,0);
(2)P(0,8)或(0,-8);
(3)当点P在O,D之间上时,∠BPE=∠OBP+∠PED.当点P在点D的右侧时,∠DEP=∠OBP+∠EPB.证明见解析部分.
(2)P(0,8)或(0,-8);
(3)当点P在O,D之间上时,∠BPE=∠OBP+∠PED.当点P在点D的右侧时,∠DEP=∠OBP+∠EPB.证明见解析部分.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:59引用:2难度:0.2
相似题
-
1.如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=
,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.55
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.发布:2025/1/28 8:0:2组卷:255引用:1难度:0.1 -
2.如图,在菱形ABCD中,AB=10,sinB=
,点E从点B出发沿折线B-C-D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.35
(1)如图1,点G在AC上.求证:FA=FG.
(2)若EF=FG,当EF过AC中点时,求AG的长.
(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?发布:2025/1/28 8:0:2组卷:2055引用:3难度:0.1 -
3.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.发布:2025/1/28 8:0:2组卷:577引用:1难度:0.2