从数1,2,3,…,1995中任意取出n个不同的数(1≤n≤1995)形成一组叫做一个n元数组,如(1,2,3,4)就是一个四元数组,(4,8,12,20,32)就是一个五元数组.现要给出一个自然数k,使得每一个k元数组中总能找到三个不同的数,此三数能构成一个三角形的三边长,则给出的k至少是多少时才能满足要求?证明你的结论.
【考点】排列与组合问题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:111引用:1难度:0.5
相似题
-
1.在一次有n个足球队参加的循环赛中(即每一队必须同其余各个队进行一场比赛),每场比赛胜队积2分,平局各积1分,败队积0分,结果有一队积分比其他各队都多,而胜的场次比其他任何一队都少,求n最小的可能值.
发布:2025/5/29 8:0:2组卷:172引用:1难度:0.1 -
2.如图,图中平行四边形共有的个数是
发布:2025/5/29 4:0:1组卷:219引用:2难度:0.5 -
3.平面上给定了2n个点,其中任意三点不共线,并且n个点染成了红色,n个点染成了蓝色,
证明:总可以找到两两没有公共点的n条直线段,使得其中每条线段的两个端点具有不同的颜色.发布:2025/5/29 8:30:1组卷:91引用:1难度:0.7