在四边形ABCD中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.

思考验证:
(1)求证:DE=DF;
(2)在图1中,若G在AB上且∠EDG=60°,试猜想CE、EG、BG之间的数量关系并证明;
归纳结论:
(3)若题中条件“∠CAB=60°且∠CDB=120°”改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?(只写结果不要证明)
探究应用:
(4)运用(1)(2)(3)解答中所积累的经验和知识,完成下题:如图2,在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=30°,E在AB上,DE⊥AB,且∠DCE=60°,若AE=3,求BE的长.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:823引用:3难度:0.3
相似题
-
1.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,求图中实线所围成的图形的面积S.
发布:2025/6/18 3:30:2组卷:627引用:3难度:0.3 -
2.如图,在等边三角形ABC中,AE=CD,CE与BD相交于点G,EF⊥BD于点F,若EF=2,则EG的长为( )
发布:2025/6/18 4:0:2组卷:1411引用:2难度:0.7 -
3.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,
连接BF,CE.下列说法:①△ABD和△ACD面积相等; ②∠BAD=∠CAD;
③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有 .(把你认为正确的序号都填上)发布:2025/6/18 4:0:2组卷:1921引用:17难度:0.5