阅读下列材料:
在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2-4x+1)(x2-4x+7)+9进行因式分解的过程.
解:设x2-4x=y
原式=(y+1)(y+7)+9(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
请根据上述材料回答下列问题:
(1)小涵同学的解法中,第二步到第三步运用了因式分解的 CC;
A.提取公因式法
B.平方差公式法
C.完全平方公式法
(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:(x-2)4(x-2)4;
(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
【考点】因式分解-运用公式法.
【答案】C;(x-2)4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/4 8:0:9组卷:3529引用:18难度:0.6