综合与探究
如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=72.
(1)求二次函数的解析式.
(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF为菱形时,求点F的坐标与菱形OEAF的面积.
(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.
7
2
【考点】二次函数综合题.
【答案】(1)y=x2-x+4;
(2)点F(3,4),菱形OEAF的面积为:24;
(3)点P的坐标为:(,)或(0,4),
2
3
14
3
(2)点F(3,4),菱形OEAF的面积为:24;
(3)点P的坐标为:(
24
13
36
13
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:222引用:1难度:0.4
相似题
-
1.如图1所示抛物线与x轴交于O,A两点,OA=6,其顶点与x轴的距离是6.
(1)求抛物线的解析式;
(2)点P在抛物线上,过点P的直线y=x+m与抛物线的对称轴交于点Q.
①当△POQ与△PAQ的面积之比为1:3时,求m的值;
②如图2,当点P在x轴下方的抛物线上时,过点B(3,3)的直线AB与直线PQ交于点C,求PC+CQ的最大值.发布:2025/5/25 21:0:1组卷:241引用:1难度:0.2 -
2.平面直角坐标系中,已知抛物线y=-x2+(1+m)x-m(m为常数,m≠±1)与x轴交于定点A及另一点B,与y轴交于点C.
(1)当点(2,2)在抛物线上时,求抛物线解析式及点A,B,C的坐标;
(2)如图1,在(1)的条件下,D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB=90°,求点D的坐标;
(3)若点P是抛物线的顶点,令△ACP的面积为S,
①直接写出S关于m的解析式及m的取值范围;
②当时,直接写出m的取值范围.58≤S≤158发布:2025/5/25 21:0:1组卷:212引用:3难度:0.1 -
3.如图,抛物线y=ax2+bx-2与x轴交于点A(-2,0)、B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的动点,求MB+MC的最小值;
(3)若点P是直线AC下方抛物线上的动点,过点P作PQ⊥AC于点Q,线段PQ是否存在最大值?若存在,求出此时点P的坐标;若不存在,请说明理由.发布:2025/5/25 21:0:1组卷:359引用:2难度:0.4