对于一个三位自然数n,若将n的任意两个数位的数对调后得到一个新三位数记为n'=100×a+10×b+c,其中a,b,c都是不小于1且不大于9的自然数,在所有的n'中,我们规定当|a-b-c|最小时的三位自然数n'是“n的好数”,并记S(n)=a-bc.例如由234得到的243,324,432中,因为|2-4-3|=5,|3-2-4|=3,|4-3-2|=1,1<3<5,所以432是“234的好数”,记S(234)=4-2×3=-2,则n'=432或423.
(1)求S(156);
(2)设三位自然数n的百位和十位的数分别是x,y,个位数是6,且3x+y=17,若n'是“n的好数”,当S(n)取最大值时,求n'.
【考点】因式分解的应用.
【答案】(1)1;
(2)625或652.
(2)625或652.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/8 19:30:1组卷:156引用:2难度:0.7
相似题
-
1.对任意一个数m,如果m等于两个正整数的平方和,那么称这个数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.
(1)判断45是否是“平方和数”,若是,请计算A(45)的值;若不是,请说明理由;
(2)若k是一个不超过50的“平方和数”,且A(k)=,求k的值;k-92
(3)对任意一个数m,如果m等于两个整数的平方和,那么称这个数m为“广义平方和数”,若m和n都是“广义平方和数”,请说明它们的乘积mn也是“广义平方和数”.发布:2025/6/8 22:30:1组卷:92引用:2难度:0.6 -
2.若一个整数能表示成a2+b2(a、b是整数)的形式,则称这个数为“完美数”,
例如,5是“完美数”.因为5=22+12.
再如,M=5x2+5y2=x2+y2+4x2+4y2
=x2+y2+4x2+4y2+4xy-4xy
=(x+2y)2+(2x-y)2(x、y是整数),所以M也是“完美数”.
(1)请你再写出一个小于20的“完美数”;
(2)判断9x2+1+4y2-12xy(x,y是整数)是否为“完美数”;并说明原因.发布:2025/6/8 22:30:1组卷:69引用:1难度:0.7 -
3.如果一个四位数M满足各个数位数字都不为0,且千位数字与百位数字之和为9,将M的千位数字与百位数字组成的两位数记为x,十位数字与个位数字组成的两位数记为y,令F(M)=
,若F(M)为整数,则称数M是“久久为功数”.x+2y9
例如:M=2754,∵2+7=9,x=27,y=54,F(M)==15为整数,∴M=2754是“久久为功数”;又如:M=6339,∵6+3=9,x=63,y=39,F(M)=27+2×549=63+2×399不为整数,∴M=6339不是“久久为功数”.473
(1)判断1827,4532是否是“久久为功数”,并说明理由;
(2)把一个“久久为功数”M的千位数字记为a,十位数字记为b,个位数字记为c,令G(M)=,当G(M)为整数时,求出所有满足条件的M.2c-3a2b+3a发布:2025/6/8 21:0:2组卷:111引用:1难度:0.5