在△ABC中,AB=4,

(1)如图1所示,DE∥BC,DE把ABC△分成面积相等的两部分,即SⅠ=SⅡ,求AD的长.
(2)如图2所示,DE∥FG∥BC,DE、FG把△ABC分成面积相等的三部分,即SⅠ=SⅡ=SⅢ,求AD的长;
(3)如图3所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把△ABC分成面积相等的n部分,SⅠ=SⅡ=SⅢ=…,请直接写出AD的长.
【考点】相似三角形的判定与性质.
【答案】(1)2;
(2);
(3).
2
(2)
4
3
3
(3)
4
n
n
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:61引用:1难度:0.5
相似题
-
1.如图,梯形ABCD中AD∥BC,对角线AC、BD交于0点,△AOD与△DOC的面积之比为3:7,则AD:BC=
发布:2025/1/28 8:0:2组卷:39引用:1难度:0.7 -
2.如图,在梯形ABCD中,AB∥CD,对角线AC、BD相交于点O,如果S△AOB=2S△AOD,AC=10,那么OC的长是.
发布:2025/1/28 8:0:2组卷:107引用:1难度:0.4 -
3.如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连接MC,MB,OT.
(Ⅰ)求证:DT•DM=DO•DC;
(Ⅱ)若∠DOT=60°,试求∠BMC的大小.发布:2025/1/28 8:0:2组卷:364引用:1难度:0.3