在平面直角坐标系中,直线y=kx+3(k为常数,且k≠0)与x轴交于点A(-6,0),与y轴交于点C,二次函数y=-12x2+bx+c的图象经过A、C两点,与x轴的另一交点为点B.
(1)求二次函数的表达式;
(2)点D是二次函数图象上一动点,过点D且垂直于x轴的直线交AC于F,交x轴于G.
①若点D、F、G三点中恰有一点是其它两点所连线段的中点,请直接写出点D的坐标;
②动点D在直线AC上方,连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△ABE的面积为S2,△ADC的面积为S3,若S3-S1S2=m,求m的取值范围.
y
=
-
1
2
x
2
+
bx
+
c
S
3
-
S
1
S
2
=
m
【考点】二次函数综合题.
【答案】(1).
(2)①点D的坐标为 (2,-4)或或(-1,5).
②.
y
=
-
1
2
x
2
-
5
2
x
+
3
(2)①点D的坐标为 (2,-4)或
(
1
2
,
13
8
)
②
0
<
m
≤
9
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/13 8:0:9组卷:190引用:1难度:0.2
相似题
-
1.已知函数y=
,记该函数图象为G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)当m=2时,
①已知M(4,n)在该函数图象上,求n的值;
②当0≤x≤2时,求函数G的最大值.
(2)当m>0时,作直线x=m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m的值;12
(3)当m≤3时,设图象与x轴交于点A,与y轴交于点B,过点B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=-3c,求m的值.发布:2025/6/8 14:30:2组卷:3081引用:7难度:0.1 -
2.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.发布:2025/6/8 14:30:2组卷:237引用:45难度:0.1 -
3.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为( )
发布:2025/6/8 8:0:6组卷:4103引用:19难度:0.7