如图1,在平面直角坐标系中,抛物线y=-32x2+32x+3与x轴交于点A和点B(点A在点B左侧),与y轴交于点C.

(1)求直线BC的解析式;
(2)点P是直线BC上方抛物线上的一动点,过点P作y轴的平行线交BC于点D,过点P作x轴的平行线交BC于点E,求PE+3PD的最大值及此时点P的坐标;
(3)如图2,在(2)中PE+3PD取得最大值的条件下,将抛物线y=-32x2+32x+3沿着射线CB方向平移得到新抛物线y′,且新抛物线y′经过线段BC的中点F,新抛物线y′与y轴交于点M,点N为新抛物线y′对称轴上一点,点Q为坐标平面内一点,若以点P,Q,M,N为顶点的四边形是以PN为边的菱形,写出所有符合条件的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程.
y
=
-
3
2
x
2
+
3
2
x
+
3
PE
+
3
PD
PE
+
3
PD
y
=
-
3
2
x
2
+
3
2
x
+
3
【考点】二次函数综合题.
【答案】(1)y=-x+;
(2)PE+PD的最大值为,此时点P的坐标为(1,);
(3)点Q的坐标为(,)或(,-)或(-,)或(,)或(,).
3
2
3
(2)PE+
3
5
2
3
(3)点Q的坐标为(
1
2
30
-
3
2
1
2
30
+
3
2
1
2
17
3
36
5
2
22
+
2
3
2
5
2
2
3
-
22
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/26 11:36:51组卷:501引用:1难度:0.2
相似题
-
1.如图,已知点M(p,q)在抛物线y=x2-1上,以M为圆心的圆与x轴交于A、B两点,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根,则弦AB的长等于 .
发布:2025/6/18 23:0:1组卷:472引用:18难度:0.7 -
2.已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
(Ⅰ)求y1与x之间的函数关系式;
(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).
(1)求y2与x之间的函数关系式;
(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.x … -1 0 3 … y1=ax2+bx+c … 0 940 … 发布:2025/6/18 22:30:2组卷:837引用:35难度:0.1 -
3.抛物线y=-x2平移后的位置如图所示,点A,B坐标分别为(-1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.
(1)求平移后的抛物线的解析式和点D的坐标;
(2)∠ACB和∠ABD是否相等?请证明你的结论;
(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.发布:2025/6/18 22:30:2组卷:435引用:51难度:0.5