如图,△ABC为边长是43的等边三角形,四边形DEFG是边长是6的正方形.现将等边△ABC和正方形DEFG按如图①的方式摆放,使点C与点E重合,点B、C、E、F在同一条直线上,△ABC从图①的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点B与点E重合时停止运动,设△ABC的运动时间为t秒.
(1)当点A与点D重合时,求此时t的值;
(2)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,求S与t之间的函数关系式;
(3)如图②,当点A与点D重合时,作∠ABE的角平分线BM交AE于点M,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形?若存在,求线段AH的长度;若不存在,请说明理由.

3
【考点】几何变换综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:111引用:1难度:0.3
相似题
-
1.已知,点D是等边△ABC边AB所在直线AB上一动点(点D与点A、B不重合),连接DC,以DC为边在DC上方作等边△DCE,连接AE;
操作发现:
(1)如图(1),当动点D在AB上,你能发现线段AE与BD之间的数量关系吗?并证明你发现的结论;
(2)如图(2),在(1)的条件下,作△DCE关于直线CD对称的△DCF,连接BF,探究AE、BF与BC有何数量关系?并证明你探究的结论;
拓展探究:
(3)如图(3),当动点D在BA的延长线上,其他作法与(2)相同,当AE=5,BF=2时,求BC的长度.发布:2025/6/14 15:30:1组卷:134引用:2难度:0.2 -
2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,动点P从点A出发,沿AC以每秒5个单位长度的速度向终点C运动,过点P作PQ⊥AB于点Q,将线段PQ绕点P逆时针旋转90°得到线段PR,连结QR.设点P的运动时间为t秒(t>0).
(1)线段AP的长为 (用含t的代数式表示).
(2)当点P与点C重合时,求t的值.
(3)当C、R、Q三点共线时,求t的值.
(4)当△CPR为钝角三角形时,直接写出t的取值范围.发布:2025/6/14 12:0:1组卷:230引用:5难度:0.9 -
3.如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC=4,AD=AE=2.连接CD,BE,F,G,H分别是BE,CD,DE的中点,连接GF,FH,GH.
(1)如图1,当B,A,E三点共线,且D在AC边上时,求线段FH,GH的长;
(2)如图2,当△ADE绕点A旋转时,求证:△GFH是等腰直角三角形,并直接写出△GFH面积的最大值.发布:2025/6/14 15:0:1组卷:139引用:2难度:0.3