综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
(1)操作判断
操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
操作二:在AD上选一点P,连接BP,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
如图1,当点M在EF上时,根据以上操作,写出一个度数为30°的角为 ∠BME或∠ABP或∠PBM或∠MBC∠BME或∠ABP或∠PBM或∠MBC;
(2)迁移探究
小华将矩形纸片换成正方形纸片,继续探究,过程如下:
将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
①如图2,当点M在EF上时,则∠MBQ=15°15°;
②改变点P在AD上的位置(点P不与点A,D重合)如图3,判断∠MBQ 与∠CBQ 的数量关系,并说明理由;
(3)拓展应用
在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm 时,请直接写出AP的长.

【考点】四边形综合题.
【答案】∠BME或∠ABP或∠PBM或∠MBC;15°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/12 8:0:9组卷:428引用:4难度:0.2
相似题
-
1.如图,△AMN是边长为2的等边三角形,以AN,AM所在直线为边的平行四边形ABCD交MN于点E、F,且∠EAF=30°.
(1)当F、M重合时,求AD的长;
(2)当NE、FM满足什么条件时,能使;32(NE+FM)=EF
(3)在(2)的条件下,求证:四边形ABCD是菱形.发布:2025/5/26 2:30:2组卷:150引用:2难度:0.1 -
2.【探究发现】(1)如图1,在四边形ABCD中,对角线AC⊥BD,垂足是O,求证:AB2+CD2=AD2+BC2.
【拓展迁移】(2)如图2,以三角形ABC的边AB、AC为边向外作正方形ABDE和正方形ACFG,求证:CE⊥BG.
(3)如图3,在(2)小题条件不变的情况下,连接GE,若∠EGA=90°,GE=6,AG=8,求BC的长.发布:2025/5/26 2:30:2组卷:957引用:6难度:0.3 -
3.如图,四边形ABCD的对角线AC,BD相交于点O,OA=OC,OB=OD+CD.
(1)如图1,过点A作AE∥BC交直线BD于点E,求证:DE=CD;
(2)如图2,将△ABD沿AB翻折得到△ABD′,求证:BD′∥CD;
(3)若BA=BC=5,AC=6,P为直线BD上的动点,当△CDP为等腰三角形时,直接写出BP的长.发布:2025/5/26 2:0:6组卷:102引用:1难度:0.3