在平面直角坐标系xOy中,已知抛物线y=ax2-4ax+1(a<0).

(1)抛物线的对称轴是直线 22;
(2)如果当-1≤x≤3时,y的最大值为5,试求当-1≤x≤3时,y的最小值;
(3)已知直线y=-x-3与抛物线y=ax2-4ax+1(a<0)存在两个交点,设左侧的交点为P(x1,y1),当-2<x1≤-1时,求a的取值范围.
【考点】二次函数综合题.
【答案】2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:96引用:1难度:0.3
相似题
-
1.设二次函数y=x2+2ax+
(a<0)的图象顶点为A,与x轴交点为B、C,当△ABC为等边三角形时,a的值为.a22发布:2025/5/27 23:30:1组卷:369引用:3难度:0.7 -
2.边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为( )
发布:2025/5/27 22:30:1组卷:1064引用:11难度:0.7 -
3.如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.发布:2025/5/28 0:30:1组卷:996引用:77难度:0.1