如图1,直线l:y=kx+b(k<0,b>0)与x、y轴分别相交于A、B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A、B、D的抛物线W叫做直线l的关联抛物线,而直线l叫做抛物线W的关联直线.
(1)已知直线l1:y=-2x+4,求直线l1的关联抛物线W1的表达式;
(2)如图2,若直线l3:y=kx+4(k<0),G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=524;
①求直线l3的关联抛物线W3的表达式;
②若点E在x=-1直线上运动,抛物线W3上是否存在一点F使得以A,B,E,F四点为顶点的四边形是平行四边形?若存在请求出点F坐标;若不存在,请说明理由;
(3)在(2)的条件下,将直线CD绕着C点旋转得到新的直线l4:y=mx+n,若点P(x1,y1)与点Q(x2,y2)分别是抛物线W3与直线l4上的点,当0≤x≤2时,|y1-y2|≤4,请直接写出m的取值范围.

5
2
4
【考点】二次函数综合题.
【答案】(1)W1:y=-x2-x+4;
(2)①直线l3的关联抛物线W3:y=-x2-x+4;
②F(-4,0);
(3)-≤m≤.
1
2
(2)①直线l3的关联抛物线W3:y=-
1
3
1
3
②F(-4,0);
(3)-
5
2
3
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:197引用:1难度:0.1
相似题
-
1.如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于C(0,3),DE所在的直线是该抛物线的对称轴.
(1)求抛物线的解析式及顶点D的坐标;
(2)连接AD,P是AD上的动点,P′是点P关于DE的对称点,连接PE,过点P′作P′F∥PE,交x轴于点F,设四边形PP′FE的面积为y,EF=x,求y与x之间的函数关系式.发布:2025/6/16 2:0:1组卷:231引用:2难度:0.3 -
2.如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=-2的距离总相等.
①证明上述结论并求出点F的坐标;
②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.
证明:当直线l绕点F旋转时,+1MF是定值,并求出该定值;1NF
(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.发布:2025/6/16 5:0:1组卷:2172引用:5难度:0.4 -
3.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
(3)在抛物线对称轴上是否存在一点M,使以A,N,M为顶点的三角形是直角三角形?若存在,请直接写出点M的坐标.若不存在,请说明理由.发布:2025/6/16 1:30:1组卷:2079引用:7难度:0.5