如图,两个形状、大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转,我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”.
(1)如图1,∠DPC=9090度;
(2)如图2,三角板BPD不动,三角板PAC从PN处开始绕点P逆时针旋转(0°<旋转角<180°),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;
(3)在(2)的条件下,若三角板PAC的旋转速度每秒10°,设旋转时间为t秒,问t为何值时,问这两个三角形是“孪生三角形”.
【考点】三角形综合题.
【答案】90
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/5 9:0:1组卷:66引用:1难度:0.2
相似题
-
1.在平面直角坐标系中,点A、B、C的坐标分别为(m,0),(2,-4),(n,0),且m,n满足方程(m-2)xn-4+
=0为二元一次方程.ym2-3
(1)求A、C的坐标;
(2)若点D为y轴正半轴上的一个动点.
①如图1,已知∠DAO=∠ACB,∠ADO与∠ACB的角平分线交于点P,求∠P的度数;
②如图2,连接BD,交x轴于点E.若S△ADE≤S△BCE成立.设动点D坐标为(0,a),求a的取值范围.发布:2025/6/8 0:30:1组卷:83引用:1难度:0.1 -
2.在平面直角坐标系中,A(a,0),C(b,2),且满足(a+b)2+|a-b+4|=0,过C作CB⊥x轴于B.
(1)如图1,求△ABC的面积.
(2)如图2,若过B作BD∥AC交y轴于D,在△ABC内有一点E,连接AE、DE,若∠CAE+∠BDE=∠EAO+∠EDO,求∠AED的度数.
(3)如图3,在(2)的条件下,DE与x轴交于点M,AC与y轴交于点F,作△AME的角平分线MP,在PE上有一点Q,连接QM,∠EAM+2∠PMQ=45°,当AE=mAM,FO=2QM时,求点E的纵坐标(用含m的代数式表示).发布:2025/6/7 23:0:2组卷:189引用:2难度:0.2 -
3.如图,在平面直角坐标系xOy中,已知A(a,0),B(b,m),且满足(a-6)2+
=0,m是36的算术平方根,将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.b-8
(1)直接写出点A、B、C的坐标;
(2)当△ODC的面积是△ABD的面积的3倍时,求点D的坐标;
(3)已知OC∥AB,设∠OCD=α,∠DBA=∠β,∠BDC=θ,判断α、β、θ之间的数量关系,并说明理由.发布:2025/6/7 21:30:1组卷:284引用:4难度:0.4