问题提出:
如图1,在Rt△ABC中AC=BC,∠ACB=90°,点D为AB上一点,连接CD,为探究AD2,BD2,CD2之间的数量关系,刘星同学思考后,提出以下解决方法.

探究解决:
将图1中CD绕着点C顺时针方向旋转90°,得到CE,连接DE,AE,如图2,请解决以下问题:
(1)证明:△ACE≌△BCD;
(2)证明:∠DAE=90°;
(3)直接写出AD2,BD2,CD2之间的数量关系为 AD2+BD2=2CD2AD2+BD2=2CD2;
(4)拓展应用:如图3,四边形ABCD内接于⊙O,且BD为⊙O直径,BC=DC,连接AC,若AB=5,BC=17,则AC=4242.
17
2
2
【考点】圆的综合题.
【答案】AD2+BD2=2CD2;4
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:276引用:2难度:0.3
相似题
-
1.已知,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是优弧CBD上的任意一点,AH=2,CH=4.
(1)如图1,
①求⊙O的半径;
②求sin∠CMD的值.
(2)如图2,直线BM交直线CD于点E,直线MH交⊙O于点N,连结BN交CD于点F,求HE•FH的值.发布:2025/6/7 7:0:1组卷:476引用:2难度:0.3 -
2.如图,四边形OABC中,AO∥BC,∠AOC=90°,AO=3,AB=5.以O为圆心,OA为半径作圆,⊙O经过点C,且与BA的延长线交于F.延长AO交圆于E,连接FC交AE于点D.
(1)求证:BC是⊙O的切线;
(2)求cos∠FAE的值;
(3)求线段OD的长.发布:2025/6/7 5:0:1组卷:79引用:1难度:0.3 -
3.等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.
(1)求∠ACB的大小(用α,β表示);
(2)连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC=2∠BAC;
(3)在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α-45°,
①求证:GM∥BC,GM=BC;12
②请直接写出的值.OMMC发布:2025/6/7 16:0:2组卷:1490引用:8难度:0.1