如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,-4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.
7
2
【考点】函数解析式的求解及常用方法.
【答案】(1)抛物线的解析式为y=-(x-)2+,顶点坐标为(,).
(2)S=-4(x-)2+25,其中1<x<6.
(3)当x=3时,E(3,4),平行四边形OEAF为菱形;当x=4时,平行四边形OEAF不是菱形.
2
3
7
2
25
6
7
2
25
6
(2)S=-4(x-
7
2
(3)当x=3时,E(3,4),平行四边形OEAF为菱形;当x=4时,平行四边形OEAF不是菱形.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/5 8:0:7组卷:4引用:1难度:0.4
相似题
-
1.已知函数f(x)的图象如图所示,则该函数的解析式为( )
发布:2024/12/2 8:0:27组卷:102引用:5难度:0.7 -
2.已知f(x+1)=2x+1,则f(2)=( )
发布:2024/12/21 4:30:3组卷:50引用:2难度:0.8 -
3.为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比.已知6分钟后药物释放完毕,药物释放完毕后,y与t的函数关系是为y=(
)116,如图所示,根据图中提供的信息,回答下列问题:t-110
(1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.125毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少分钟后,学生才能回到教室?发布:2024/12/3 8:0:1组卷:51引用:1难度:0.5