观察猜想
(1)如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点D与点C重合,点E在斜边AB上,连接DE,且DE=AE,将线段DE绕点D顺时针旋转90°得到线段DF,连接EF,则EFAD=6363,sin∠ADE=1212,
探究证明
(2)在(1)中,如果将点D沿CA方向移动,使CD=13AC,其余条件不变,如图2,上述结论是否保持不变?若改变,请求出具体数值:若不变,请说明理由
拓展延伸
(3)如图3,在△ABC中,∠ACB=90°,∠CAB=a,点D在边AC的延长线上,E是AB上任意一点,连接DE.ED=nAE,将线段DE绕着点D顺时针旋转90°至点F,连接EF.求EFAD和sin∠ADE的值分别是多少?(请用含有n,a的式子表示)

EF
AD
6
3
6
3
1
2
1
2
1
3
EF
AD
【考点】几何变换综合题.
【答案】;
6
3
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1088引用:6难度:0.1
相似题
-
1.(1)如图1,过等边△ABC的顶点A作AC的垂线l,点P为l上点(不与点A重合),连接CP,将线段CP绕点C逆时针方向旋转60°得到线段CQ,连接QB.
①求证:AP=BQ;
②连接PB并延长交直线CQ于点D.若PD⊥CQ,AC=,求PB的长;2
(2)如图2,在△ABC中,∠ACB=45°,将边AB绕点A顺时针旋转90°得到线段AD,连接CD,若AC=1,BC=3,求CD长.发布:2025/5/24 15:0:1组卷:655引用:3难度:0.1 -
2.已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.
(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是 ;
(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.发布:2025/5/24 10:0:2组卷:2758引用:12难度:0.1 -
3.如图1,等腰直角三角形ABC中,∠A=90°,AB=AC=10
cm,D为AB边上一点,tan∠ACD=2,点P由C点出发,以2cm/s的速度向终点B运动,连接PD,将PD绕点D逆时针旋转90°,得到线段DQ,连接PQ.15
(1)填空:BC=,BD=;
(2)点P运动几秒,DQ最短;
(3)如图2,当Q点运动到直线AB下方时,连接BQ,若S△BDQ=8,求tan∠BDQ;
(4)在点P运动过程中,若∠BPQ=15°,请直接写出BP的长.发布:2025/5/24 14:0:2组卷:80引用:2难度:0.1