自从某校开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点).
(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;
(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;
(3)问如何将课堂时间分配给精讲和当堂检测,才能使学生在这40分钟的学习收益总量最大?

【考点】二次函数的应用.
【答案】(1)y=2x,(0≤x≤40);(2)y=-x2+16x;(3)此“高效课堂”模式分配33分钟时间用于精讲、分配7分钟时间当堂检测,才能使这学生在40分钟的学习收益总量最大.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:110引用:1难度:0.6
相似题
-
1.如图,是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=-x2+4x+12发出一个带光的点P.
(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;
(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求抛物线C的表达式.发布:2025/5/25 14:30:1组卷:144引用:2难度:0.4 -
2.某旅游区的湖边有一个观赏湖中音乐喷泉的区域,该区域沿湖边有一条东西向的长为32m的栏杆.考虑到观景安全和效果,旅游区计划设置一个矩形观众席,该观众席一边靠栏杆,另三边用现有的总长为60m的移动围栏围成,并在观众席内按行、列(东西向为行,南北向为列)摆放单人座椅,要求每个座位占地面积为1m2(如图所示),且观众席内的区域恰好都安排了座位.
(1)若观众席内有x行座椅,用含x的代数式表示每行的座椅数,并求x的最小值;
(2)旅游区库存的500张座椅是否够用?请说明理由.发布:2025/5/25 15:30:2组卷:521引用:4难度:0.6 -
3.某科技公司生产一款精密零件,每个零件的成本为80元,当每个零件售价为200元时,每月可以售出1000个该款零件,若每个零件售价每降低5元,每月可以多售出100个零件,设每个零件售价降低x元,每月的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)为了更好地回馈社会,公司决定每销售1个零件就捐款n(0<n≤6)元作为抗疫基金,当40≤x≤60时,捐款后每月最大的销售利润为135000元,求n的值.发布:2025/5/25 15:30:2组卷:527引用:1难度:0.5