已知抛物线C:y2=2px,点A(12,1)是抛物线C上的点.
(Ⅰ)求抛物线的方程及p的值;
(Ⅱ)直线l与抛物线交于P(x1,y1),Q(x2,y2)两点,y1y2<0,且OP•OQ=3,求|y1|+2|y2|的最小值并证明直线l过定点.
A
(
1
2
,
1
)
OP
•
OQ
=
3
【考点】抛物线与平面向量.
【答案】(Ⅰ)y2=2x;p=1;
(Ⅱ)|y1|+2|y2|的最小值为,直线l恒过定点(3,0).
(Ⅱ)|y1|+2|y2|的最小值为
4
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:84引用:3难度:0.5
相似题
-
1.已知抛物线C:x2=8y,点F是抛物线的焦点,直线l与抛物线C交于A,B两点,点M的坐标为(2,-2).
(1)若直线l过抛物线的焦点F,且•MA=1,求直线l的斜率;MB
(2)分别过A,B两点作抛物线C的切线,两切线的交点为M,求直线l的斜率.发布:2024/12/29 12:0:2组卷:41引用:3难度:0.5 -
2.已知抛物线C的顶点是坐标原点O,焦点F在y轴的正半轴上,经过点F的直线与抛物线C交于A,B两点,若
,则抛物线C的方程为( )OA•OB=-12发布:2024/10/16 12:0:2组卷:140引用:1难度:0.7 -
3.已知抛物线C:x2=2py(p>0)的焦点为F,过点F的直线与抛物线交于点A,B,与抛物线的准线交于点M,且点A位于第一象限,F恰好为AM的中点,
(λ∈R),则λ=( )AF=λBM发布:2024/11/25 23:0:1组卷:154引用:6难度:0.6