已知二次曲线Ck的方程:x29-k+y24-k=1.
(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-5,0),F2(5,0)满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.
x
2
9
-
k
+
y
2
4
-
k
=
1
F
1
(
-
5
,
0
)
,
F
2
(
5
,
0
)
【答案】(1)当且仅当k<4时,方程表示椭圆;
当且仅当4<k<9时,方程表示双曲线.
(2)=1;
(3)由(1)知C1,C2,C3是椭圆,C5,C6,C7,C8是双曲线,结合图象的几何性质
任意两椭圆之间无公共点,任意两双曲线之间无公共点
设|PF1|=d1,|PF2|=d2,m∈{1,2,3},n∈{5,6,7,8}
由椭圆与双曲线定义及=0;
所以m+n=8
所以这样的Cm,Cn存在,且
或
或
.
当且仅当4<k<9时,方程表示双曲线.
(2)
x
2
3
-
y
2
2
(3)由(1)知C1,C2,C3是椭圆,C5,C6,C7,C8是双曲线,结合图象的几何性质
任意两椭圆之间无公共点,任意两双曲线之间无公共点
设|PF1|=d1,|PF2|=d2,m∈{1,2,3},n∈{5,6,7,8}
由椭圆与双曲线定义及
P
F
1
•
P
F
2
d 1 + d 2 = 2 9 - m |
| d 1 - d 2 | = 2 9 - n |
d 1 2 + d 2 2 = 20 |
所以这样的Cm,Cn存在,且
m = 1 |
n = 7 |
m = 2 |
n = 6 |
m = 3 |
n = 5 |
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:528引用:6难度:0.1
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:100引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7