迎接冬季奥运会期间,某市对全体高中学生举行了一次关于冬季奥运会相关知识的测试.统计人员从全市高中学生中随机抽取200名学生成绩作为样本进行统计,测试满分为100分,统计后发现所有学生的测试成绩都在区间[40,100]内,统计相应分数段的人数如表:
分数段 | 学生人数 | 累计总人数 |
[40,50) | 10人 | 10人 |
[50,60) | 40人 | 50人 |
[60,70) | 50人 | 100人 |
[70,80) | 60人 | 160人 |
[80,90) | 30人 | 190人 |
[90,100] | 10人 | 200人 |
(2)在这200名学生中用分层抽样的方法从成绩在[70,80),[80,90),[90,100]的三组中抽取了10人,再从这10人中随机抽取3人,记X为3人中成绩在[80,90)的人数,求X的分布列和数学期望;
(3)规定成绩在[90,100]的为A等级,成绩在[70,90)的为B等级,其它为C等级.以样本估计总体,用频率代替概率.从所有参加考试的同学中随机抽取10人,其中获得B等级的人数恰为k(k≤10)人的概率为P,当k为何值时P的值最大?
【考点】离散型随机变量的均值(数学期望).
【答案】(1)

这200名学生的平均成绩为69.5(分);
(2)故X的分布列为:
故E(X)=;
(3)k=4时P的值最大.

这200名学生的平均成绩为69.5(分);
(2)故X的分布列为:
X | 0 | 1 | 2 | 3 |
P | 7 24 |
21 40 |
7 40 |
1 120 |
9
10
(3)k=4时P的值最大.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:78引用:1难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:200引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7