在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,6),其中AB=8,tan∠CAB=3.
(1)求抛物线的表达式;
(2)点P是直线BC上方抛物线上一点,过点P作PD∥AC交x轴于点D,交BC于点E,求10PE-2BE的最大值及点P的坐标.
(3)将该抛物线沿射线CA方向平移210个单位长度得到抛物线y1,平移后的抛物线与原抛物线相交于点F,点G为抛物线y1的顶点,点M为直线FG上一点,点N为平面上一点.在(2)中,当10PE-2BE的值最大时,是否存在以P、E、M、N为顶点的四边形是菱形,若存在,直接写出点N的坐标;若不存在,请说明理由.

10
PE
-
2
10
10
PE
-
2
【考点】二次函数综合题.
【答案】(1)y=x2+2x+6;
(2)4,(4,6);
(3)(1,5)或(,)或(3+,3+)或(3-,3-).
-
1
2
(2)4,(4,6);
(3)(1,5)或(
17
4
17
4
5
5
5
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1143引用:5难度:0.1
相似题
-
1.如图1,直线y=-x+5与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(-1,0).
(1)求B、C两点的坐标及该抛物线所对应的函数关系式;
(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m.
①若点P的横坐标为m,请用m表示线段PE的长度并写出m的取值范围;
②有人认为:当直线a与抛物线的对称轴重合时,线段PE的值最大,你同意他的观点吗?请说明理由;
③过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR与△BOC相似?若存在,请求出点R的坐标;若不存在,请说明理由.发布:2025/5/24 9:0:1组卷:155引用:3难度:0.3 -
2.抛物线y=ax2+bx+3经过A(-1,0),B(3,0)两点,与y轴正半轴交于点C.
(1)求此抛物线解析式;
(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;
(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.发布:2025/5/24 8:0:1组卷:301引用:3难度:0.1 -
3.在平面直角坐标系xOy中,已知二次函数y=a(x-1)2+k的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,E为抛物线的顶点,且tan∠ABE=2.
(1)求此二次函数的表达式;
(2)已知P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,若S△EAP=3S△EMN,求点P的坐标;
(3)如图2,将原抛物线沿y轴翻折得到一个新抛物线,A点的对应点为点F,过点C作直线l与新抛物线交于另一点M,与原抛物线交于另一点N,是否存在这样一条直线,使得△FMN的内心在直线EF上?若存在,求出直线l的解析式;若不存在,请说明理由.发布:2025/5/24 9:0:1组卷:767引用:5难度:0.3