将一副直角三角板如图1,摆放在直线MN上(直角三角板ABC和直角三角板EDC,∠EDC=90°,∠DEC=60°,∠ABC=90°,∠BAC=45°),保持三角板EDC不动,将三角板ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.
(1)如图2,当AC为∠DCE的角平分线时,求此时t的值;
(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB的数量关系;
(3)在旋转过程中,当三角板ABC的其中一边平行于三角板EDC的某一边时,求此时t等于 15s或24s或27s或33s15s或24s或27s或33s(直接写出答案即可).

【答案】15s或24s或27s或33s
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/5 19:0:1组卷:2232引用:21难度:0.4
相似题
-
1.如图所示,△ABC的∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2,求∠BAD的度数和线段AD的长.
发布:2025/6/17 12:30:1组卷:1516引用:40难度:0.5 -
2.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( )
发布:2025/6/17 10:30:2组卷:89引用:2难度:0.8 -
3.如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为( )
发布:2025/6/17 10:30:2组卷:275引用:2难度:0.9