勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.

(1)①勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理(以下图形均满足证明勾股定理所需的条件);
②如图1,大正方形的面积是17,小正方形的面积是5,如果将如图1中的四个全等的直角三角形按如图2的形式摆放,求图2中最大的正方形的面积.
(2)如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 33个;
(3)如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1、S2,直角三角形面积为S3,请判断S1、S2、S3的关系 S1+S2=S3S1+S2=S3.
【考点】勾股定理的证明.
【答案】3;S1+S2=S3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:615引用:3难度:0.6
相似题
-
1.我国是最早了解勾股定理的国家之一,东汉末年数学家刘徽在为《九章算术》作注中依据割补术而创造了勾股定理的无字证明“青朱出入图”,移动几个图形就直观地证明了勾股定理,如图,若a=3,b=4,则△CFG的面积为 .
发布:2025/5/26 4:0:1组卷:110引用:1难度:0.6 -
2.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼接成的大正方形,若直角三角形的两条直角边长分别为a,b(a>b),大正方形的面积为S1,小正方形的面积为S2,则用含S1,S2的代数式表示(a+b)2正确的是( )
发布:2025/5/26 4:0:1组卷:982引用:7难度:0.5 -
3.如图是我国汉代数学家赵爽在注解《周辞算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH拼成的一个大正方形ABCD.连结CE,若CE=AD,则tan∠BCE的值为( )
发布:2025/5/26 6:30:2组卷:370引用:1难度:0.3