定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC为“相似对角线”的四边形,请只用无刻度的直尺,就可以在网格中画出点D,请你在图1中找出满足条件的点D,保留画图痕迹(找出2个即可)
(2)①如图2,在四边形ABCD中,∠DAB=90°,∠DCB=135°,对角线AC平分∠DAB.请问AC是四边形ABCD的“相似对角线”吗?请说明理由;
②若AC=10,求AD•AB的值.
(3)如图3,在(2)的条件下,若∠D=∠ACB=90°时,将△ADC以A为位似中心,位似比为5:2缩小得到△AEF,连接CE、BF,在△AEF绕点A旋转的过程中,当CE所在的直线垂直于AF时,请你直接写出BF的长.

10
5
2
【考点】相似形综合题.
【答案】(1)见解析;
(2)①是,理由见解析;
②10;
(3)2或4.
(2)①是,理由见解析;
②10;
(3)2
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:918引用:4难度:0.3
相似题
-
1.在矩形ABCD中,AB=4,BC=3,E是AB边上的一个动点(不与点A、B重合),EF⊥EC交AD于F,过点E作∠AEH=∠BEC,交射线AD于G,交射线CD于H.
(1)如图1,当点G与点F重合时,求AE的长;
(2)如图2,当点G在线段FD上时,设BE=x,DH=y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)连接AC,以E、F、G为顶点的三角形能否与△AEC相似,如果能,请求出AE的长;如果不能,请说明理由.发布:2025/5/24 21:0:1组卷:61引用:1难度:0.1 -
2.点P在四边形ABCD的对角线AC上,直角三角板PEF绕直角顶点P旋转,其边PE、PF分别交BC、CD边于点M、N.
【操作发现】如图①,若四边形ABCD是正方形,当PM⊥BC时,可知四边形PMCN是正方形,显然PM=PN.当PM与BC不垂直时,判断确定PM、PN之间的数量关系; .(直接写出结论即可)
【类比探究】如图②,若四边形ABCD是矩形,试说明.PMPN=ABAD
【拓展应用】如图③,改变四边形ABCD、△EPF的形状,其他条件不变,且满足AB=8,AD=6,∠B+D=180o,∠EPF=∠BAD>90o时,求的值.PMPN发布:2025/5/24 20:30:2组卷:227引用:4难度:0.1 -
3.【基础巩固】
(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.
【尝试应用】
(2)如图2,在平行四边形ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.
【拓展提高】
(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,则菱形ABCD的边长为 .12发布:2025/5/24 21:0:1组卷:2744引用:17难度:0.1