小明同学遇到这样一个问题:
如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
求证:∠BED=∠B+∠D.
小亮帮助小明给出了该问的证明.
证明:过点E作EF∥AB,则有∠BEF=∠B,
∵AB∥CD∴EF∥CD∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D.
请你参考小亮的思考问题的方法,解决问题:
(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=60°,求∠APB的度数.
(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.

【考点】平行线的判定与性质.
【答案】(1)75°;
(2)∠APB=∠PAC+∠PBD或∠APB=∠PAC-∠PBD或∠APB=∠PBD-∠PAC.
(2)∠APB=∠PAC+∠PBD或∠APB=∠PAC-∠PBD或∠APB=∠PBD-∠PAC.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:684引用:2难度:0.5
相似题
-
1.如图,D是AB上一点,E是AC上一点,∠ADE=65°,∠B=65°,∠AED=45°.求∠C的度数.
发布:2025/1/23 8:0:2组卷:233引用:1难度:0.8 -
2.如图,∠ABC+∠ECB=180°,∠P=∠Q.
求证:∠1=∠2.
根据图形和已知条件,请补全下面这道题的解答过程.
证明:∵∠ABC+∠ECB=180° ,
∴AB∥ED .
∴∠ABC=∠BCD .
又∵∠P=∠Q(已知),
∴PB∥.
∴∠PBC=.
又∵∠1=∠ABC-,∠2=∠BCD-,
∴∠1=∠2(等量代换).发布:2024/12/23 20:0:2组卷:1149引用:10难度:0.7 -
3.如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.
(1)DE和BC平行吗?
(2)∠C是多少度?为什么?发布:2025/1/23 8:0:2组卷:73引用:2难度:0.7