(1)用两种不同方法计算同图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a-b)2、(a+b)2、ab三者之间的等量关系式 (a+b)2=(a-b)2+4ab(a+b)2=(a-b)2+4ab.
(2)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+3a2b+3ab2+b3(a+b)3=a3+3a2b+3ab2+b3.
(3)利用上面所得的结论解答:
①已知x+y=6,xy=5,求x-y的值.
②已知|a+b-5|+(ab-6)2=0,求a3+b3的值.
【答案】(a+b)2=(a-b)2+4ab;(a+b)3=a3+3a2b+3ab2+b3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/12 21:30:1组卷:241引用:3难度:0.6
相似题
-
1.观察图,写出此图可以验证的一个等式 .(写出一个即可)
发布:2025/6/14 4:0:2组卷:342引用:2难度:0.6 -
2.如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图中长方形的面积S2的比是 .
发布:2025/6/13 8:0:2组卷:1720引用:13难度:0.4 -
3.探究题
图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)请你用两种不同的代数式表示图2中阴影部分面积:
①;②.
(2)观察图2,写出三个代数式(m+n)2,(m-n)2,4mn之间的等量关系:.
(3)根据(2)中的等量关系,解决如下问题:
若|a+b-8|+(ab-7)2=0,求(a-b)2的值.发布:2025/6/14 0:30:2组卷:304引用:6难度:0.7