问题情境:
数学活动课上,同学们开展了以“矩形纸片折叠”为主题的探究活动(每个小组的矩形纸片规格相同),已知矩形纸片宽AB=8,长AD=82.
动手实践:
(1)如图1,腾飞小组将矩形纸片ABCD折叠,点A落在BC边上的点A'处,折痕为BE,连接A'E,然后将纸片展平,得到四边形AEA'B,则折痕BE的长为 8282.
(2)如图2,永攀小组将矩形纸片ABCD沿经过A、C两点的直线折叠,展开后得折痕AC,再将其沿经过点B的直线折叠,使点A落在OC上(O为两条折痕的交点),第二条折痕与AD交于点E.请写出OC与OA的数量关系,并说明理由.
深度探究:
(3)如图3,探究小组将图1中的四边形AEA'B剪下,在AE上取中点F,将△ABF沿BF叠得到△MBF,点P,Q分别是边A'E,A'B上的动点(均不与顶点重合),将△A'PQ沿PQ折叠的对应点N恰好落在BM上,当△A'PQ的一个内角与∠A'BM相等时,请直接写出A'Q的长度.
AD
=
8
2
2
2
【考点】四边形综合题.
【答案】8
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 1:0:1组卷:725引用:3难度:0.1
相似题
-
1.如图,在正方形ABCD中,点G为BC边上的动点,点H为CD边上的动点,且满足BG+DH=HG,连接AH,AG分别交正方形ABCD的对角线BD于F,E两点,则下列结论中正确的有 .(填序号即可)
①∠DHA=∠GHA;②AF•AH=AE•AG;③BE+DF=EF;④AH=AE2发布:2025/5/24 5:30:2组卷:250引用:1难度:0.3 -
2.如图1,在矩形ABCD中,AB=3,AD=4.P为对角线BD上的点,过点P作PM⊥AD于点M,PN⊥BD交BC于点N,Q是M关于PD的对称点,连结PQ,QN.
(1)如图2,当Q落在BC上时,求证:BQ=MD.
(2)是否存在△PNQ为等腰三角形的情况?若存在,求MP的长;若不存在,请说明理由.
(3)若射线MQ交射线DC于点F,当PQ⊥QN时,求DF:FC的值.发布:2025/5/24 6:0:2组卷:366引用:3难度:0.1 -
3.四边形ABCD为正方形,AB=8,点E为直线BC上一点,射线AE交对角线BD于点F,交直线CD于点G.
(1)如图,点E在BC延长线上.求证:△CFG∽△EFC;
(2)是否存在点E,使得△CFG是等腰三角形?若存在,求BE的长;若不存在,请说明理由.发布:2025/5/24 7:0:1组卷:57引用:1难度:0.1