试卷征集
加入会员
操作视频

背景阅读:
早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载与我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或
3
2
4
2
5
2
的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作:

如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决:
(1)请在图4中判断NF与ND′的数量关系,并加以证明;
(2)请在图4中证明△AEN(3,4,5)型三角形;
探索发现:
(3)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.

【考点】四边形综合题
【答案】(1)结论:NF=ND′,证明见解析部分;
(2)证明见解析部分;
(3)△MFN,△MD′H,△MDA是(3,4,5)型三角形,证明见解析部分,
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:183引用:4难度:0.1
相似题
  • 1.如图,点E,F,G,H分别是正方形ABCD的边DA,AB,BC,CD的中点,连接AH,BE,CF,DG,它们分别相交于点M,N,P,Q,连接NQ.若AB=4,则下列结论错误的是(  )

    发布:2025/5/24 4:0:7组卷:148引用:1难度:0.2
  • 2.如图,矩形AOBC的顶点B,A分别在x轴,y轴上,点C坐标是(5,4),D为BC边上一点,将矩形沿AD折叠,点C落在x轴上的点E处,AD的延长线与x轴相交于点F.
    (1)如图1,求点D的坐标;
    (2)如图2,若P是AF上一动点,PM⊥AC交AC于M,PN⊥CF交CF于N,设AP=t,FN=s,求s与t之间的函数关系式;
    (3)在(2)的条件下,是否存在点P,使△PMN为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    发布:2025/5/24 5:0:1组卷:1724引用:8难度:0.1
  • 3.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”,如图1,四边形ABCD中,AB=CD、AB⊥CD,四边形ABCD即为等垂四边形,其中相等的边AB,CD称为腰,另两边AD,BC称为底
    【提出问题】
    (1)如图2,△ABC与△DEC都是等腰直角三角形.∠ACB=∠DCE=90°,135°<∠AEC<180°.求证:四边形BDEA是“等垂四边形”;
    【拓展探究】
    (2)如图3,四边形ABCD是“等垂四边形”,AD≠BC,点M、N分别是AD,BC的中点,连接MN.已知腰AB=5,求MN的长;
    【综合运用】
    (3)如图4,四边形ABCD是“等垂四边形”,AB=CD=4,底BC=9,则较短的底AD长的取值范围为

    发布:2025/5/24 5:0:1组卷:466引用:1难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正