已知函数f(x)是定义在(-1,1)上的函数,且对定义域内任意的a,b,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
(1)判断f(x)的单调性,并加以证明;
(2)解关于t的不等式f(1-t)+f(1-t2)<0.
【考点】抽象函数的周期性;由函数的单调性求解函数或参数.
【答案】(1)判断:f(x)在(-1,1)上单调递减,证明见解析;
(2)不等式的解集为(0,1).
(2)不等式的解集为(0,1).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:132引用:3难度:0.6
相似题
-
1.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
发布:2024/12/20 0:0:3组卷:83引用:8难度:0.8 -
2.已知函数f(x),g(x)在R上的导函数分别为f'(x),g'(x),若f(x+2)为偶函数,y=g(x+1)-2是奇函数,且f(3-x)+g(x-1)=2,则下列结论正确的是( )
发布:2024/12/28 23:30:2组卷:125引用:7难度:0.6 -
3.已知函数f(x)对任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的图象关于点(-1,0)对称,且f(1)=2,则f(2009)=( )
发布:2024/12/29 7:0:1组卷:84引用:2难度:0.5