如图,AB,CD是两个过江电缆的铁塔,塔高均为40米,AB的中点为P,小丽在距塔底B点西50米的地面E点恰好看到点E,P,C在一直线上,且P,D离江面的垂直高度相等.跨江电缆AC因重力自然下垂近似成抛物线形,为了保证过往船只的安全,电缆AC下垂的最低点距江面的高度不得少于30米.已知塔底B距江面的垂直高度为6米,电缆AC下垂的最低点刚好满足最低高度要求.

(1)求电缆最低点与河岸EB的垂直高度h及两铁塔轴线间的距离(即直线AB和CD之间的水平距离).
(2)求电缆AC形成的抛物线的二次项系数.
【考点】二次函数的应用.
【答案】(1)电缆最低点与河岸EB的垂直高度h为24米;两铁塔轴线间的距离为100米;
(2)电缆AC形成的抛物线的二次项系数为.
(2)电缆AC形成的抛物线的二次项系数为
1
100
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/25 2:0:6组卷:177引用:2难度:0.4
相似题
-
1.某城市发生疫情,第x天(1≤x≤15)新增病例y(人)如表所示:
x 1 2 3 4 … 14 15 y 2 24 46 68 … 288 310
(2)由于疫情传染性强,第15天开始新增病例人数模型发生变化,第x天(x≥15)新增病例y(人)满足y=-5(x-m)(x-13)(m为已知数).请预计第几天新增病例清零;
(3)为应对本轮疫情,按照每一个新增病例需当天提供一张病床的要求,政府应该在哪一天为新增病例提供的病床最多?最多应该提供多少张病床?发布:2025/5/25 5:30:2组卷:338引用:2难度:0.6 -
2.随着地摊经济的火爆发展,某小龙虾养殖户决定将自家养殖的小龙虾加工后拿到夜市售卖,已知每份小龙虾的成本价是16元,在投放市场试销后,发现每晚销售量y(份)与销售单价x(元/份)是一次函数的关系,部分数据如下:
销售单价x(元/份) … 20 25 30 35 … 每晚销售量y(份) … 60 50 40 30 …
(2)求该养殖户每晚的销售利润W(元)与销售单价x(元/份)的函数表达式.(利润=收入-成本)
(3)若相关部门规定一件产品的利润率不得高于50%,则当销售单价定为多少元时每晚可获利最大?并求出最大利润.发布:2025/5/25 5:0:4组卷:12引用:2难度:0.6 -
3.云浮市各级公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,郁南县某商场同时购进A,B两种类型的头盔,已知购进3个A类头盔和4个B类头盔共需288元;购进6个A类头盔和2个B类头盔共需306元.
(1)A,B两类头盔每个的进价各是多少元?
(2)在销售中,该商场发现A类头盔每个售价50元时,每个月可售出100个;每个售价提高5元时,每个月少售出10个.设A类头盔每个x元(50≤x≤100),y表示该商家每月销售A类头盔的利润(单位:元),求y关于x的函数解析式并求最大利润.发布:2025/5/25 5:0:4组卷:140引用:6难度:0.5