试卷征集
加入会员
操作视频

如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论
FH
AB
=
FG
BG
成立.(考生不必证明)
(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.
(3)发现:通过上述过程,你发现G在直线CD上时,结论
FH
AB
=
FG
BG
还成立吗?

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/27 7:30:1组卷:800引用:16难度:0.1
相似题
  • 1.如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.求证:AM=DM.

    发布:2025/6/16 8:30:2组卷:92引用:3难度:0.5
  • 2.菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为
    cm2

    发布:2025/6/16 8:0:2组卷:1400引用:10难度:0.5
  • 3.如图,菱形ABCD中,∠ABC=60°,AB=6,则BD=(  )

    发布:2025/6/16 10:30:1组卷:399引用:4难度:0.8
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正