综合与探索
【探索发现】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,过点A作AD⊥l交于点D,过点B作BE⊥l交于点E,易得△ADC≌△CEB,我们称这种全等模型为“k型全等”.(不需要证明)
【迁移应用】如图2,在直角坐标系中,直线l1:y=2x+4分别与y轴,x轴交于点A、B,
(1)直接写出OA=44,OB=22;
(2)在第二象限构造等腰直角△ABE,使得∠BAE=90°,则点E的坐标为 (-4,6)(-4,6);

(3)如图3,将直线l1绕点A顺时针旋转45°得到l2,求l2的函数表达式;
【拓展应用】
(4)如图4,直线AB:y=2x+8分别交x轴和y轴于A,B两点,点C在第二象限内一点,在平面内是否存在一点D,使以A、B、C、D为顶点的四边形为正方形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
【考点】一次函数综合题.
【答案】4;2;(-4,6)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/7 8:0:9组卷:1069引用:4难度:0.5
相似题
-
1.如图,一次函数y=
x+6的图象与x,y轴分别交于A,B两点,点C与点A关于y轴对称.动点P,Q分别在线段AC,AB上(点P与点A,C不重合),且满足∠BPQ=∠BAO.34
(1)求点A,B的坐标及线段BC的长度;
(2)当点P在什么位置时,△APQ≌△CBP,说明理由;
(3)当△PQB为等腰三角形时,求点P的坐标.发布:2025/6/8 16:0:1组卷:2625引用:5难度:0.3 -
2.已知:如图,直线AB与x轴交于点C,与y轴交于点D,平面内有一点E(3,1),直线BE与x轴交于点F.直线AB的解析式记作y1=kx+b,直线BE解析式记作y2=mx+t.
(1)求直线AB,BE的解析式及△BCF的面积;
(2)当x 时,kx+b>mx+t;
(3)在x轴上有一动点H,使得△OBH为等腰三角形,请直接写出H的坐标.发布:2025/6/8 15:30:1组卷:284引用:3难度:0.4 -
3.在平面直角坐标系中,B(0,-4),A为x轴上一动点.
(1)如图1,已知A(2,0),将线段AB绕点B逆时针旋转90°至CB,求C点坐标;
(2)在(1)的条件下,D为直线CB上一点,E为直线y=x上一点,M(2,1),若以M、O、D、E为顶点的四边形是平行四边形,求E点坐标;
(3)将线段AB绕点B旋转60°至CB,当C落在直线y=x上时,求点C的坐标.发布:2025/6/8 16:0:1组卷:370引用:1难度:0.3