已知函数f(x)=4sinωx2cos(ωx2+π3)+m(ω>0).在下列条件①、条件②、条件③这三个条件中,选择可以确定ω和m值的两个条件作为已知.
(1)求f(π6)的值;
(2)若函数f(x)在区间[0,a]上是增函数,求实数a的最大值.
条件①:f(x)最小正周期为π;
条件②:f(x)最大值与最小值之和为0;
条件③:f(0)=2.
f
(
x
)
=
4
sin
ωx
2
cos
(
ωx
2
+
π
3
)
+
m
(
ω
>
0
)
f
(
π
6
)
【考点】两角和与差的三角函数;三角函数的最值.
【答案】(1)选条件①②:f()=.选条件①③:f()=0;
(2).
π
6
3
π
6
(2)
π
12
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:135引用:2难度:0.5