【操作体验】
如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°.
如图②,小明的作图方法如下:
第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;
第二步:连接OA,OB;
第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2.
所以图中P1,P2即为所求的点.
(1)在图②中,连接P1A,P1B,说明∠AP1B=30°.
【方法迁移】
(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°.(不写作法,保留作图痕迹)
【深入探究】
(3)如图④,已知矩形ABCD中,AB=6,BC=4,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,求PQ的最小值.

【考点】圆的综合题.
【答案】(1)见解答过程;(2)见解答过程;(3)2-4.
34
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:273引用:1难度:0.2
相似题
-
1.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
(1)求证:直线CE是圆O的切线.
(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1 -
2.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
(1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
(2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3 -
3.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
(1)求证:BE是圆O的切线;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
(3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1