如图1,抛物线y=36x2+433x+23与x轴交于点A,B(A在B左边),与y轴交于点C,连AC,点D与点C关于抛物线的对称轴对称,过点D作DE∥AC交抛物线于点E,交y轴于点P.
(1)点F是直线AC下方抛物线上点一动点,连DF交AC于点G,连EG,当△EFG的面积的最大值时,直线DE上有一动点M,直线AC上有一动点N,满足MN⊥AC,连GM,NO,求GM+MN+NO的最小值;
(2)如图2,在(1)的条件下,过点F作FH⊥x轴于点H交AC于点L,将△AHL沿着射线AC平移到点A与点C重合,从而得到△A′H′L′(点A,H,L分别对应点A′,H′,L′),再将△A′H′L′绕点H′逆时针旋转α(0°<α<180°),旋转过程中,边A′L′所在直线交直线DE于Q,交y轴于点R,求当△PQR为等腰三角形时,直接写出PR的长.

3
6
2
+
4
3
3
x
+
2
3
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:646引用:5难度:0.1
相似题
-
1.已知抛物线y=ax2+bx-3经过点A(1,0),B(-2,-3),顶点为点P,与y轴交于点C.
(1)求该抛物线的表达式以及顶点P的坐标;
(2)将抛物线向上平移m(m>0)个单位后,点A的对应点为点M,若此时MB∥AC,求m的值;
(3)设点D在抛物线y=ax2+bx-3上,且点D在直线BC上方,当∠DBC=∠BAC时,求点D的坐标.发布:2025/5/24 11:30:1组卷:471引用:1难度:0.3 -
2.平面直角坐标系xOy中,抛物线y=ax2-3ax+1与y轴交于点A.
(1)求点A的坐标及抛物线的对称轴;
(2)当-1≤x≤2时,y的最大值为3,求a的值;
(3)已知点P(0,2),Q(a+1,1).若线段PQ与抛物线只有一个公共点,结合函数图象,求a的取值范围.发布:2025/5/24 10:30:2组卷:1465引用:13难度:0.2 -
3.如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点.
(1)求抛物线的解析式;
(2)已知点D(0,-1),点P为线段BC上一动点,连接DP并延长交抛物线于点H,连结BH,当四边形ODHB的面积为时,求点H的坐标;112
(3)已知点E为x轴上一动点,点Q为第二象限抛物线上一动点,以CQ为斜边作等腰直角三角形CEQ,请直接写出点E的坐标.发布:2025/5/24 10:30:2组卷:772引用:4难度:0.1