如图1,矩形ABCD中,点E在边BC上,点F在边CD上,连接AE,EF,AF,∠FEC=2∠BAE.

(1)求证:EA平分∠BEF;
(2)如图2,若矩形ABCD为正方形.
①求∠EAF的度数;
②如图3,若AF的垂直平分线l交BC于点G,连接GA,GF,求证:∠BAG=∠GFE.
【考点】四边形综合题.
【答案】(1)见解析;
(2)①45°;②见解析.
(2)①45°;②见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/17 8:0:9组卷:145引用:3难度:0.5
相似题
-
1.(1)如图1,在四边形ABCD中,DA=DC,∠A=∠C=90°,E、F分别是边AB、BC上的点,且∠EDF=
∠ADC,请直接写出图中线段AE、EF、FC之间的数量关系 .12
(2)如图2,在四边形ABCD中,DA=DC,∠A+∠C=180°,E、F分别是边AB、BC上的点,且∠EDF=∠ADC,上述结论是否仍然成立,并说明理由.12
(3)如图3,在四边形ABCD中,DA=DC,∠A+∠BCD=180°,E、F分别是边AB、BC延长线上的点,且∠EDF=∠ADC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,线段AE、EF、FC之间又有怎样的数量关系,请直接写出你的猜想,并说明理由.12发布:2025/6/9 2:30:1组卷:165引用:1难度:0.2 -
2.矩形ABCD中,∠ACB=30°,△BEF中,∠BEF=90°,∠BFE=30°,BF=
AC,连接FD,点G是FD中点,将△BEF绕点B顺时针旋转α(0°<α<360°).12
(1)如图1,若点B恰好在线段DF延长线上,AB=4,连接EG,求EG的长度;
(2)如图2,若点E恰好落在线段FD上,连接AG,证明:2(GD-GA)=DC;3
(3)如图3,若点E恰好落在线段AB延长线上,点M是线段AD上一点,3AM=DM,N是平面内一点,满足∠MND=∠FDC,已知AB=4,当△DMN是等腰三角形时,直接写出线段MN的长度.发布:2025/6/9 1:0:1组卷:118引用:1难度:0.1 -
3.问题情境:数学活动课上,老师组织同学们以“正方形”为主题开展数学活动.
动手实践:
(1)如图①,已知正方形纸片ABCD,勤奋小组将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,易知点E、M、F共线,则∠EAF=度.
拓展应用:
(2)如图②,腾飞小组在图①的基础上进行如下操作:将正方形纸片沿EF继续折叠,使得点C的对应点为点N,他们发现,当点E的位置不同时,点N的位置也不同,当点E在BC边的某一位置时,点N恰好落在折痕AE上.
①则∠CFE=度.
②设AM与NF的交点为点P,运用(1)、(2)操作所得结论,求证:△ANP≌△FNE.
解决问题:
(3)在图②中,若AB=3,请直接写出线段MP的长.发布:2025/6/9 2:0:7组卷:1098引用:9难度:0.3