如图1,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在线段AC上,连结DE,作DF⊥DE交直线BC于点F,连结EF.
【初步尝试】
(1)如图2,当AE=4,线段EF的长度是 55,线段BF的长度是 33.
【结论探究】
(2)如图1,小宁猜想“AE2+BF2=EF2”,但她未能想出证明思路,小波介绍了添加辅助线的方法,如表所示,请帮小宁完成证明.
如图,延长ED至G,使DG=DE,连结BG,FG. |
![]() |
(3)如图3,当点E在线段CA的延长线上时,连结DE,作DF⊥DE交直线BC于点F,连结EF.请补全图形,并求出当AE=2时,线段BF的长.

【考点】三角形综合题.
【答案】5;3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:484引用:1难度:0.1
相似题
-
1.【问题呈现】某学校的数学社团成员在学习时遇到这样一个题目:
如图1,在△ABC中,AB>AC,AD平分∠BAC交BC于点D,点E在DC的延长线上,过E作EF∥AB交AC的延长线于点F,当BD:DE=1时,试说明:AF+EF=AB;
【方法探究】
社团成员在研究探讨后,提出了下面的思路:
在图1中,延长线段AD,交线段EF的延长线于点M,可以用AAS明△ABD≌△MED,从而得到EM=AB…
(1)请接着完成剩下的说理过程;
【方法运用】
(2)在图1中,若BD:DE=k,则线段AF、EF、AB之间的数量关系为 (用含k的式子表示,不需要证明);
(3)如图2,若AB=7,EF=6,AF=8,BE=12,求出BD的长;
【拓展提升】
(4)如图3,若DE=2BD,连接AE,已知AB=9,tan∠DAF=,AE=212,且AF>EF,则边EF的长=.17发布:2025/5/25 0:0:2组卷:320引用:4难度:0.2 -
2.如图,OC为∠AOB的角平分线,∠AOB=α(0°<α<180°),点D为射线OA上一点,点M,N为射线OB上两个动点且满足MN=OD,线段ON的垂直平分线交OC于点P,交OB于点Q,连接DP,MP.
(1)如图1,若α=90°时,线段DP与线段MP的数量关系为 .
(2)如图2,若α为任意角度时,(1)中的结论是否变化,请说明理由;
(3)如图3,若α=60°时,连接DM,请直接写出的最小值.DMON发布:2025/5/25 1:0:1组卷:92引用:2难度:0.1 -
3.在△ABC中,AB=BC,∠B=45°,AD为BC边上的高,M为线段AB上一动点.
(1)如图1,连接CM交AD于Q,若∠ACM=45°,AB=.求线段DQ的长度;2
(2)如图2,点M,N在线段AB上,且AM=BN,连接CM,CN分别交线段AD于点Q、P,若点P为线段CN的中点,求证:AQ+CD=AB;2
(3)如图3,若AD=4,当点M在运动过程中,射线DB上有一点G,满足BM=10DG,AG+2MG的最小值.55发布:2025/5/24 23:0:1组卷:102引用:1难度:0.1