月牙定理指以直角三角形两条直角边为直径向外作两个半圆,以斜边为直径向内作半圆,则三个半圆所围成的两个月牙形面积之和等于该直角三角形的面积.该定理“化圆为方”解决了曲、直两个图形可以等面积的问题.如图所示,△ABC为大圆的内接等腰直角三角形,分别以AB,AC为直径作半圆APB,AQC,大圆圆内的弧线是以A为圆心,AC为半径的圆的一部分,若向整个几何图形中随机投掷一点,那么该点落在图中阴影部分的概率为( )
【考点】几何概型.
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:79引用:3难度:0.6
相似题
-
1.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于.
发布:2025/1/13 8:0:2组卷:30引用:12难度:0.7 -
2.如图所示,在矩形ABCD中,AB=4cm,BC=2cm,在图形上随机撒一粒黄豆,则黄豆落到圆上的概率是.
发布:2025/1/13 8:0:2组卷:9引用:2难度:0.7 -
3.如图,矩形ABCD,AB=2,BC=1,阴影部分为B为圆心,BC为半径的圆与矩形的重合部分,现在向矩形内随机投掷一点,则该点落在阴影部分以外的概率为( )
发布:2024/12/29 15:30:4组卷:1引用:1难度:0.7