如图1.直线l1:y=-33x+33与x轴、y轴分别交于C、D两点,直线l2与x轴、y轴分别交于A(3,0),B两点,与直线l1交于点Q(6,a),点P为线段DQ上一动点.
(1)求直线l2的解析式;
(2)已知在y轴上有一动点E,直线l2上有一动点F,连接PE,PF,EF,当△PBD面积为63时,求△PEF周长的最小值;
(3)如图2,在(2)的条件下,将直线l2沿CD方向平移,使其平移后的直线l3恰好经过点P,平移后点B的对应点为B′,点M为y轴上一动点,点N为平面内任意一个动点,是否存在点M和对应的点N,使得以点P,B′,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.

-
3
3
x
+
3
3
3
【考点】一次函数综合题.
【答案】(1)y=x-;
(2)6;
(3)(6,2+)或(6,2-或(-6,-)或(-6,).
3
3
3
(2)6
3
(3)(6,2
3
39
3
39
39
39
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/27 8:0:9组卷:1258引用:3难度:0.1