如图1,点O为长方形ABCD的中心,x轴∥BC,y轴∥AB,AB=6,BC=12.

(1)直接写出A、B的坐标;
(2)如图2,若点P从C点出发以每秒2个单位长度向CB方向匀速移动(不超过点B),点Q从B点出发以每秒1个单位长度向BA方向匀速移动(不超过点A),连接DP、DQ,在点P、Q移动过程中,四边形PBQD的面积是否发生变化?若不变,求其值;若变化,求其变化范围.
(3)如图3,若矩形MNRS中,MN=4,NR=2,M(-8,0),MS在x轴上,矩形MNRS以每秒1个单位长度向右平移t(t>0)秒得到矩形M'N'R'S',点M'、N'、R'、S'分别为M、N、R、S的对应点,与此同时,点G从点O出发,沿矩形OEDF的边以每秒2个单位长度的速度顺时针方向运动,当点G第二次运动到点E时,点G和矩形MNRS都停止运动.连接GM'、GN',当△GM'N'的面积为12时,请直接写出t的值.
【考点】四边形综合题.
【答案】(1)A(-6,3),B(-6,-3);
(2)四边形PBQD的面积不发生变化,S四边形PBQD=36;
(3).
(2)四边形PBQD的面积不发生变化,S四边形PBQD=36;
(3)
t
=
20
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:116引用:2难度:0.1
相似题
-
1.某校数学活动小组在一次活动中,对一个数学问题作如下探究:
(1)问题发现:如图1,在等边△ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ,BP与CQ的数量关系是 ;
(2)变式探究:如图2,在等腰△ABC中,AB=BC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP=PQ,∠APQ=∠ABC,连接CQ,判断∠ABC和∠ACQ的数量关系,并说明理由;
(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为3,CQ=1,求正方形ADBC的边长.发布:2025/5/25 18:30:1组卷:215引用:1难度:0.4 -
2.学习了菱形的判定后,小张同学与小刘同学讨论探索折纸中的菱形.
小张:如图①,两张相同宽度的矩形纸条重叠部分(阴影部分)是一个菱形.
小刘:如图②,一张矩形纸条沿EG折叠后,重叠部分展开(阴影部分)后是一个菱形.
(1)小张同学的判断是否正确?
(2)小刘同学的判断是否正确?如果正确,以小刘的方法为例,证明他的判断;如果不正确,请说明理由,
(3)如图③,矩形ABCD的宽AB=4,若AE=2AB,沿BE折叠后,重叠部分展开(阴影部分)后得到菱形GBFE,求菱形GBFE的面积.发布:2025/5/25 19:30:2组卷:76引用:2难度:0.4 -
3.如图,在菱形ABCD中,AB=10cm,对角线BD=12cm.动点P从点A出发,以1cm/s的速度沿AB匀速运动;动点Q同时从点D出发,以2cm/s的速度沿BD的延长线方向匀速运动.当点P到达点B时,点P,Q同时停止运动.设运动时间为t(s)(0<t≤10),过点P作PE∥BD,交AD于点E,以DQ,DE为边作▱DQFE,连接PD,PQ.
(1)当t为何值时,△BPQ为直角三角形?
(2)设四边形BPFQ的面积为S(cm2),求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使四边形BPFQ的面积为菱形ABCD面积的?若存在,求出t的值;若不存在,请说明理由;1924
(4)是否存在某一时刻t,使点F在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.发布:2025/5/25 19:0:2组卷:466引用:2难度:0.1